
Embedded Coder™ Release
Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded Coder™ Release Notes

© COPYRIGHT 2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Bug Reports . 1

Summary by Version . 2

Version 6.1 (R2011b) Embedded Coder Software 4

Version 6.0 (R2011a) Embedded Coder Software 22

Compatibility Summary for Embedded Coder
Software . 54

iii

iv Contents

Embedded Coder™ Release Notes

Bug Reports
Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at http://www.mathworks.com/support/bugreports/. Use the
Saved Searches and Watched Bugs tool with the search phrase “Incorrect
Code Generation” to obtain a report of known bugs that produce code that
might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

1

http://www.mathworks.com/support/bugreports/

Embedded Coder™ Release Notes

Summary by Version
This table provides quick access to what is new in each version. For
clarification, see “Using Release Notes” on page 2.

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Latest Version
V6.1 (R2011b)

Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V6.0 (R2011a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

• New features

• Changes

• Potential impact on your existing files and practices

Review the release notes for other MathWorks® products required for this
product (for example, MATLAB® or Simulink®). Determine if enhancements,
bugs, or compatibility considerations in other products impact you.

If you are upgrading from a software version other than the most recent one,
review the current release notes and all interim versions. For example, when
you upgrade from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

What Is in the Release Notes

New Features and Changes

• New functionality

• Changes to existing functionality

2

http://www.mathworks.com/support/bugreports/?product=EC&release=R2011b
http://www.mathworks.com/support/bugreports/?product=EC&release=R2011b
http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a

Summary by Version

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the
impact.

Compatibility issues reported after the product release appear under Bug
Reports at the MathWorks Web site. Bug fixes can sometimes result
in incompatibilities, so review the fixed bugs in Bug Reports for any
compatibility impact.

Fixed Bugs and Known Problems

MathWorks offers a user-searchable Bug Reports database so you can view
Bug Reports. The development team updates this database at release time
and as more information becomes available. Bug Reports include provisions
for any known workarounds or file replacements. Information is available
for bugs existing in or fixed in Release 14SP2 or later. Information is not
available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

Documentation on the MathWorks Web Site
Related documentation is available on mathworks.com for the latest release
and for previous releases:

• Latest product documentation

• Archived documentation

3

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/help/
http://www.mathworks.com/help/doc-archives.html

Embedded Coder™ Release Notes

Version 6.1 (R2011b) Embedded Coder Software
This table summarizes what is new in Version 6.1 (R2011b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary

Bug Reports
Includes fixes

New features and changes introduced in this version are:

• “Static Code Metrics in Code Generation Report” on page 5

• “AUTOSAR Enhancements” on page 5

• “SIL and PIL Enhancements” on page 6

• “Generate Multitasking Code for Concurrent Execution on Multicore
Processors” on page 8

• “Changes for Embedded IDEs and Embedded Targets” on page 8

• “Saturation Control of Stateflow Data” on page 11

• “Custom Storage Class Properties for Managing Data Ownership and
Definition” on page 12

• “Export Data Declarations to Shared Header File for Code Generation
with Model Reference” on page 13

• “Target Function Library Code Replacement Enhancements” on page 13

• “Code Generation Enhancements” on page 15

• “Enhanced Code Generation Optimization Using Minimum and Maximum
Values” on page 17

• “New Model Advisor Check for Code Efficiency of Logic Blocks” on page 17

• “Control of Default Case Generation for Switch Statements in Generated
Code for Stateflow Charts” on page 18

• “Improvement to Build Process for Conflicting Identifiers” on page 19

4

http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a

Version 6.1 (R2011b) Embedded Coder™ Software

• “Update to Code Generation Verification Class cgv.Config” on page 20

• “License Names Not Yet Updated for Coder Product Restructuring” on
page 20

• “New and Enhanced Demos” on page 21

Static Code Metrics in Code Generation Report
The HTML code generation report now includes a static code metrics report.
The static code metrics include: number of source code files, number of lines of
code, list of global variables, functions in a call tree format, and the estimated
stack size required for a function.

To generate the static code metrics report, on the Code Generation >
Report pane of the Configuration Parameters dialog box, select the Static
code metrics parameter and build your model. For more information, see
“Analyze Static Code Metrics of the Generated Code”.

AUTOSAR Enhancements

Import and Export of AUTOSAR Sensor/Actuator Components
Embedded Coder™ now supports Sensor/Actuator Software Components.
The key difference between a sensor/actuator component and an application
component is that a sensor/actuator component can access the I/O hardware
abstraction part within the ECU abstraction layer.

This support allows you to import sensor/actuator components, implement and
test designs within Simulink, and export sensor/actuator components. For
more information, see “Using the Configure AUTOSAR Interface Dialog Box”.

Improved Simulink Library Support for Multiple Runnables
Previously, Embedded Coder did not support the creation of multiple
runnables from subsystems with links to Simulink library blocks. For
example, you had to disable and break links to library blocks in order to
configure and validate the subsystems as AUTOSAR runnables.

Now, the software supports the creation of multiple runnables when:

5

Embedded Coder™ Release Notes

• The wrapper subsystem (containing function-call subsystems) is a link
to a library block

• The function-call subsystems (within the wrapper subsystem) are links
to library blocks

For more information, see “Configuring Multiple Runnables” in the Embedded
Coder documentation.

AUTOSAR Schema Version 3.2
The software now supports AUTOSAR schema version 3.2 (3.2.1). See
“Selecting an AUTOSAR Schema”.

Export AUTOSAR XML as Single File
When you export an AUTOSAR Software Component, you can generate XML
as either a set of files (default) or a single file. The latter option is new. For
more information, see “Using the Configure AUTOSAR Interface Dialog Box”.

SIL and PIL Enhancements
R2011b supports the following enhancements for software-in-the loop (SIL)
and processor-in-the-loop (PIL) simulations.

Code Execution Profiling of Functions in Subsystems and
Model Blocks
Previously, you could generate a profile of code execution times only for tasks
within your generated code (for example, the step function for a sample rate).
Now, you can also produce a profile of code execution times for functions
generated from atomic subsystems and model reference hierarchies within the
top model. The software places instrumentation probes inside these functions
and calculates execution times during a SIL or PIL simulation. At the end of
the simulation, you can view an HTML report and analyze execution times
within the MATLAB environment:

• The HTML report provides a summary of maximum and average execution
times, which allows you to identify code that requires optimization

• The supplied APIs allow you to carry out further analysis of time
measurements.

6

Version 6.1 (R2011b) Embedded Coder™ Software

For more information, see “Code Execution Profiling” in the Embedded Coder
documentation.

Code Coverage with LDRA Testbed
You can measure code coverage using the LDRA Testbed® from LDRA
Software Technology. For more information, see “Code Coverage”.

BitField and GetSet Custom Storage Classes
The software previously did not support the BitField and GetSet custom
storage classes. Now, the software supports these custom storage classes for
all types of SIL and PIL simulations, with one limitation. GetSet behavior
for the SIL block is different from top-model SIL/PIL, Model block SIL/PIL,
and PIL block:

• SIL block — The C definitions of the Get and Set functions that you provide
form part of the algorithm under test.

• Other types of SIL/PIL — The SIL/PIL test harness automatically provides
C definitions of the Get and Set functions that are used during SIL/PIL
simulations. In addition, the software supports only scalar signals,
parameters and global data stores.

For more information, see “I/O Support” and “GetSet Custom Storage Class”.

Model Blocks with Variable-Size Signals
You can run Model block SIL and PIL simulations where the Model block
contains variable-size signals. On the Simulation > Configuration
Parameters > Model Referencing pane, in the Propagate sizes of
variable-size signals field, you must specify During execution. See “I/O
Support”.

Verification of Generated C++ Code
Previously, support for C++ was restricted to simulations with the SIL block.
Now, you can verify generated C++ code using all types of SIL and PIL:

• Top-model

• Model block

7

Embedded Coder™ Release Notes

• SIL or PIL block

As before, only the SIL block supports C++ encapsulation. See “Configuration
Parameters Support”.

Generate Multitasking Code for Concurrent Execution
on Multicore Processors
The Embedded Coder product extends the concurrent execution modeling
capability of the Simulink product. With Embedded Coder, you can generate
multitasking code that uses POSIX threads (Pthreads) for concurrent
execution on multicore processors running Linux® or VxWorks®.

See “Configuring Models for Targets with Multicore Processors”.

Changes for Embedded IDEs and Embedded Targets

• “64-bit Version of Embedded Coder Supports Analog Devices™ VisualDSP++
and Texas Instruments’ Code Composer Studio 3.3 and 4.0” on page 9

• “Support Added for Wind River VxWorks 6.8” on page 9

• “Support Added for Serial Communications Interface with
Processor-in-the-loop (PIL) for Texas Instruments™ C28035 and C28335
” on page 9

• “New Target Function Library for Intel IPP/SSE (GNU)” on page 10

• “Support Added for Single Instruction Multiple Data (SIMD) with ARM
Cortex-A8, ARM Cortex-A9 , and Intel Processors” on page 10

• “Support Removed for Altium TASKING” on page 11

• “Support Removed for Infineon® C166” on page 11

• “Support Ending for Green Hills® MULTI in a Future Release” on page 11

• “Support Ending for Freescale MPC5xx in a Future Release” on page 11

8

Version 6.1 (R2011b) Embedded Coder™ Software

64-bit Version of Embedded Coder Supports Analog Devices
VisualDSP++ and Texas Instruments’ Code Composer Studio
3.3 and 4.0
Installing MATLAB & Simulink on a 64-bit Windows® computer automatically
installs the 64-bit versions of your MathWorks products, including Embedded
Coder software. Now, you can use the 64-bit version of Embedded Coder
software with the following 32-bit IDEs/tool chains:

• Texas Instruments’ Code Composer Studio™ 3.3

• Texas Instruments’ Code Composer Studio 4.0

• Analog Devices™ VisualDSP++® 5.0 (update 8)

Previously, you had to install the 32-bit versions of your MathWorks products
to use Embedded Coder software with these IDEs.

For more information, see Embedded Coder — Support for Texas Instruments
and Embedded Coder — Support for Analog Devices.

Also, check the Texas Instruments™ and Analog Devices™ Web sites for
support information about using their tools on 64-bit Windows platforms.

Support Added for Wind River VxWorks 6.8
You can automatically generate and integrate code with the Wind River®

VxWorks 6.8 RTOS using makefiles via the XMakefiles feature. For more
information, see “Choosing an XMakefile Configuration”and “Working with
Wind River VxWorks RTOS”.

Support Added for Serial Communications Interface with
Processor-in-the-loop (PIL) for Texas Instruments™ C28035
and C28335
This release adds support for Serial Communication Interface (SCI)
communications during processor-in-the-loop (PIL) simulations with Texas
Instruments™ C28035 and C28335 microcontrollers. Using SCI for PIL
simulations is much faster than using an IDE debugger for PIL.

9

http://www.mathworks.com/products/embedded-coder/ti-adaptor.html
http://www.mathworks.com/products/embedded-coder/adi-adaptor.html

Embedded Coder™ Release Notes

For more information, see “Serial Communication Interface (SCI) for Texas
Instruments C28035 and C28335”, “Example — Performing a Model Block
PIL Simulation via SCI Using Makefiles”, and the fuelsys_pil demo.

New Target Function Library for Intel IPP/SSE (GNU)
This release adds a new Target Function Library (TFL), Intel IPP/SSE
(GNU), for the GCC compiler. This library includes the Intel Performance
Primitives (IPP) and Streaming SIMD Extensions (SSE) code replacements.

For more information, see “Target Function Library (TFL) and Embedded
TargetsDesktop Targets”.

Support Added for Single Instruction Multiple Data (SIMD) with
ARM Cortex-A8, ARM Cortex-A9 , and Intel Processors
This release adds support for the Single Instruction Multiple Data (SIMD)
capabilities of the ARM® Cortex-A8, ARM Cortex-A9 , and Intel® processors.
The use of SIMD instructions increases throughput compared to traditional
Single Instruction Single Data (SISD) processing.

The following TFLs (code replacement libraries) optimize generated code
for SIMD:

• GCC ARM Cortex-A8 — The GCC compiler and the ARM Cortex-A8
embedded processor

• GCC ARM Cortex-A9 — The GCC compiler and the ARM Cortex-A9
embedded processor

• Intel IPP/SSE (GNU) — The GCC compiler and the Intel Performance
Primitives (IPP) and Streaming SIMD Extensions (SSE)

The performance of the SIMD-enabled executable depends on several factors,
including:

• Processor architecture of the target

• Optimized library support for the target

• The type and number of TFL replacements in the generated algorithmic
code

10

Version 6.1 (R2011b) Embedded Coder™ Software

Evaluate the performance of your application before and after using the TFL.

To use SIMD capabilities, enable the corresponding TFLs as described in
“Target Function Library (TFL) and Embedded TargetsDesktop Targets”.

Support Removed for Altium TASKING
Support for the Altium® TASKING IDE has been removed from the Embedded
Coder product.

Support Removed for Infineon C166
Support for the Infineon® C166® processor family has been removed from
the Embedded Coder product.

Support Ending for Green Hills MULTI in a Future Release
Support for the Green Hills® MULTI® IDE will end in a future release of
the Embedded Coder product.

Support Ending for Freescale MPC5xx in a Future Release
Support for the Freescale™ MPC5xx processor family will end in a future
release of the Embedded Coder product.

Saturation Control of Stateflow Data
A new property for Stateflow® charts, Saturate on integer overflow,
enables you to control the behavior of data with signed integer types when
overflow occurs. This check box appears in the Chart properties dialog box.

11

Embedded Coder™ Release Notes

Check Box When to Use This
Setting

Overflow Handling Example of a Result

Selected Overflow is possible for
data in your Stateflow
chart and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

An overflow associated
with a signed 8-bit
integer saturates to –128
or +127.

Cleared You want to optimize
efficiency of the generated
code.

The behavior depends on
the C compiler you use
for generating code.

The number 130 does
not fit in a signed 8-bit
integer and wraps to
–126.

Arithmetic operations in the chart for which you can enable saturation
protection are:

• Unary minus: –a

• Binary operations: a + b, a – b, a * b, a / b, a ^ b

• Assignment operations: a += b, a –= b, a *= b, a /= b

For new charts, this check box is selected by default. When you open charts
saved in previous releases, the check box is cleared to maintain backward
compatibility.

For more information, see “Handling Integer Overflow for Chart Data” in
the Stateflow User’s Guide.

Custom Storage Class Properties for Managing Data
Ownership and Definition
In R2011b, use the Owner and Definition File properties of custom
storage classes to manage the definition and ownership of mpt data objects in
generated code.

Previously, you could include the data definitions in generated code but could
not specify the model that defined the data. Now, Embedded Coder creates
the data definitions in the generated code according to the Owner property.

12

Version 6.1 (R2011b) Embedded Coder™ Software

The Owner property of a custom storage class specifies the model that owns
and defines the data in the generated code. The Definition File property
specifies a name for the data definition file that Embedded Coder generates.

Compatibility Considerations:

• If your legacy code exports data definitions to generated code and you now
specify the Owner property, your generated code might have duplicate
data definitions. This duplication causes a link error. In this case, remove
the data definitions from the legacy code.

• If your legacy code does not export data definitions to generated code and
you now specify the Owner property, your generated code might not
contain data definitions. This mismatch causes a link error. In this case,
add the missing data definitions to your legacy code.

Export Data Declarations to Shared Header File for
Code Generation with Model Reference
When generating code with model reference, you can export shared data
declarations to a specific header file in a shared directory.

Specify a data declaration header file in the following ways:

• For a data object: In the Code generation options section of the data
object dialog

• For a model: In the Code Generation > Code Placement section of the
Configuration Parameters dialog

Specify the option to use a Shared location in the field Shared code
placement in Code Generation > Interface section of the Configuration
Parameters dialog.

Target Function Library Code Replacement
Enhancements
R2011b provides the following enhancements to code replacement using
target function libraries (TFLs).

13

Embedded Coder™ Release Notes

Code Replacement Tool for Creating and Managing TFL Tables
R2011b provides the Code Replacement Tool, which helps you create and
manage the code replacement tables that make up a TFL. You can:

• Create a new code replacement table or import existing tables.

• Add, modify, and delete table entries. Each table entry represents a
potential code replacement for a single function or operator. You can
manage multiple tables together and copy and paste entries between tables.

• Validate correctness of tables and table entries.

• Save code replacement tables as MATLAB files.

• Generate the customization file needed to register your code replacement
tables with code generation software.

Each code replacement table contains one or more table entries. Each table
entry represents a potential replacement, during code generation, of a single
function or operator by a custom implementation. For each table entry, you
provide:

• Mapping Information, which relates a conceptual view of the function or
operator (similar to the Simulink block view of the function or operator) to
a custom implementation of that function or operator.

• Build Information, which provides any header, source, or link
information required for building the custom implementation.

You can open the Code Replacement Tool in the following ways:

• Go to the Interface pane of the Configuration Parameters dialog box
and click the Custom button, which is located to the right of the Target
function library parameter.

• Use the MATLAB command crtool.

For more information about creating code replacement tables for TFLs,
see “Creating and Managing Code Replacement Tables Using the Code
Replacement Tool”.

14

Version 6.1 (R2011b) Embedded Coder™ Software

Ability to Align Data Objects to TFL-Specified Boundaries to
Boost Code Performance
R2011b provides the ability to align data objects passed into a TFL
replacement function to a specified boundary. This allows you to take
advantage of target-specific function implementations that require data to
be aligned in order to optimize application performance. To configure data
alignment for a function implementation:

1 Specify the data alignment requirements in a TFL table entry. Alignment
can be specified separately for each implementation function argument or
collectively for all function arguments.

2 Specify the data alignment capabilities and syntax for one or more
compilers, and include the alignment specifications in a TFL registry entry
in an sl_customization.m or rtwTargetInfo.m file.

For more information on specifying data alignment requirements and
compiler alignment attributes, see “Configuring Data Alignment for Function
Implementations”.

For additional examples of configuring data alignment for function
implementations, see the demo rtwdemo_tfl_script.

Support for Replacing Element-wise Matrix Multiply
TFLs support several nonscalar operators for replacement with custom
library functions in generated model code. R2011b adds support for replacing
element-wise matrix multiplication operations (.* operator in element-wise
mode) with custom implementations. For more information, see “Mapping
Nonscalar Operators to Target-Specific Implementations”.

Code Generation Enhancements

Redundant Condition Checks
Multiple checks of the same condition are difficult to avoid in modeling. For
example, a common modeling pattern is Switch blocks sharing the same
condition check. Previously, the generated code for multiple Switch blocks
produced multiple if statements.

15

Embedded Coder™ Release Notes

if (cond) {
true_statement1;

} else {
false_statement1; }

if (cond) {
true_statement2;

} else {
false_statement2;

}

In R2011b, the generated code combines these condition checks. For example,
the generated code for Switch blocks with a common condition combines these
multiple if statements.

if (cond) {
true_statement1;
true_statement2;

}
else {

false_statement1;
false_statement2;

}

This optimization reduces code size and execution time. As a result, other
optimizations for condition expressions or merged branches are enabled which
reduce data copies and RAM usage.

Loop Fusion
R2011b provides more precise data dependency analysis of the data and
signals of a nested Simulink bus. This enhancement enables more loop fusion
in the generated code which reduces code execution time and ROM, and
improves code readability.

Invariant Condition Check Lifting
When a condition check is invariant to the enclosing loop and you specify
loops to be unrolled, the code generator lifts the check out of the loop. This
enhancement reduces ROM, enables additional optimizations, and improves
execution speed and code readability. For more information on loop unrolling,
see “Configuring a Loop Unrolling Threshold”.

16

Version 6.1 (R2011b) Embedded Coder™ Software

Parameter Pooling for Stateflow and Interpreted MATLAB
Function Blocks
Parameter pooling now occurs for Simulink matrix constants used as
Stateflow graphical function arguments. This enhancement reduces RAM and
ROM, and improves thread safety.

Readability Improvement for Reusable Subsystem Input and
Output
The generated code for reusable subsystem input and output now eliminates
redundant operators and unnecessary parentheses. This enhancement
improves code readability.

Enhanced Code Generation Optimization Using
Minimum and Maximum Values
The Optimize using specified minimum and maximum values code
generation option now takes into account the minimum and maximum values
specified for all Simulink.Parameter objects even if the object is part of
an expression. For example, consider a Gain block with a gain parameter
specified as an expression such as k1 + 5, where k1 is a Simulink.Parameter
object with k1.min = -10 and k1.max = 10. If minimum and maximum
values of the parameter specified in the parameter dialog box are 0 and 20,
the range calculated for this parameter expression is 0 to 15.

For more information, see “Optimizing Generated Code Using Specified
Minimum and Maximum Values”.

New Model Advisor Check for Code Efficiency of
Logic Blocks
The Simulink Model Advisor includes the following new check for code
efficiency of logic blocks: “Check output types of logic blocks”. The following
blocks in the Simulink Logic and Bit Operations library can use boolean or
another setting for the output data type:

• Compare To Constant

• Compare To Zero

17

Embedded Coder™ Release Notes

• Detect Change

• Detect Decrease

• Detect Fall Negative

• Detect Fall Nonpositive

• Detect Increase

• Detect Rise Nonnegative

• Detect Rise Positive

• Interval Test

• Interval Test Dynamic

• Logical Operator

• Relational Operator

Running this Model Advisor check helps you identify logic blocks that do not
use boolean for the output data type.

For more information about the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

Control of Default Case Generation for Switch
Statements in Generated Code for Stateflow Charts
You can specify whether or not to always generate default cases for switch
statements in the generated code for Stateflow charts. This optimization
works on a per-model basis and applies to the code generated for a state
that has multiple substates. Use the following check box on the Code
Generation > Code Style pane of the Configuration Parameters dialog box:

18

Version 6.1 (R2011b) Embedded Coder™ Software

Check Box When to Use This
Setting

Format of Switch
Statements

Selected Provide better code
coverage by ensuring
that every branch in
the generated code is
falsifiable.

Exclude the default case
when it is unreachable.

Cleared Ensure MISRA C®

compliance and provide
a fallback in case of
RAM corruption.

Always include a
default case.

For new models, this check box is cleared by default. When you open models
saved in previous releases, the check box is also cleared to maintain backward
compatibility.

For more information, see “Code Generation Pane: Code Style” in the
Embedded Coder Reference documentation.

Improvement to Build Process for Conflicting
Identifiers
Previously, if your model contained two referenced models with the same
input (or output) port names, the model might not build because of potentially
conflicting identifiers. The failure to build happens when the generated
identifiers exceed the Maximum identifier length. In R2011b, the build

19

Embedded Coder™ Release Notes

process is improved to handle more cases when two referenced models have
the same input (or output) port names. For more information, see “Model
Referencing Considerations”.

Update to Code Generation Verification Class
cgv.Config

Compatibility Considerations
The Connectivity cgv.Config parameter has the following updates:

• pil replaces the custom value. In R2011b, you can use custom without
producing a warning or error message.

• The tasking value is no longer available. Specifying tasking produces
an error.

License Names Not Yet Updated for Coder Product
Restructuring
The Simulink® Coder™ and Embedded Coder license name strings stored in
license.dat and returned by the license ('inuse') function have not yet
been updated for the R2011a coder product restructuring. Specifically, the
license ('inuse') function continues to return 'real-time_workshop'
for Simulink Coder and 'rtw_embedded_coder' for Embedded Coder, as
shown below:

>> license('inuse')
matlab
matlab_coder
real-time_workshop
rtw_embedded_coder
simulink
>>

The license name strings intentionally were not changed, in order to avoid
license management complications in situations where Release 2011a
or higher is used alongside a preR2011a release in a common operating
environment. MathWorks plans to address this issue in a future release.

20

Version 6.1 (R2011b) Embedded Coder™ Software

For more information about using the function, see the license
documentation.

New and Enhanced Demos
The following demos have been enhanced in R2011b:

Demo... Now...

rtwdemo_pmsmfoc_script Shows how you can perform system-level
simulation and algorithmic code generation using
Field-Oriented Control for a Permanent Magnet
Synchronous Machine

rtwdemo_sil_pil_script Incorporates code execution profiling

rtwdemo_tfl_script Shows how you can align nonscalar data passed into
a target function library (TFL) code replacement
function

fuelsys_pil Incorporates using serial communication interface
to communicate during PIL simulation

21

Embedded Coder™ Release Notes

Version 6.0 (R2011a) Embedded Coder Software
This table summarizes what is new in Version 6.0 (R2011a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary

Bug Reports
Includes fixes

New features and changes introduced in this version are:

• “Coder Product Restructuring” on page 23

• “Data Management Enhancements and Changes” on page 28

• “AUTOSAR Enhancements” on page 31

• “SIL and PIL Enhancements” on page 33

• “Code Generation Enhancements” on page 34

• “Code Generation Verification (CGV) API Updates” on page 36

• “MISRA-C Code Generation Objective” on page 40

• “New Model Advisor Check for Code Efficiency of Lookup Table Blocks”
on page 40

• “Enhanced Code Generation Optimization” on page 41

• “Target Function Library Replacement Based on Computation Method for
Reciprocal Sqrt, Sine, and Cosine” on page 42

• “Target Function Library Support for abs, min, max, and sign functions”
on page 42

• “C++ Encapsulation Allowed for Referenced Models in For Each
Subsystems” on page 42

• “Improved Code Generation for Portable Word Sizes” on page 43

• “Improved Comments in the Generated Code” on page 43

22

http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a

Version 6.0 (R2011a) Embedded Coder™ Software

• “Replacement Data Types and Simulation Mode for Referenced Models”
on page 43

• “Changes for Embedded IDEs and Embedded Targets” on page 43

• “Changes to ver Function Product Arguments” on page 52

• “New and Enhanced Demos” on page 53

Coder Product Restructuring

• “Product Restructuring Overview” on page 23

• “Resources for Upgrading from Real-Time Workshop Embedded Coder”
on page 24

• “Migration of Embedded MATLAB Coder Features to MATLAB® Coder”
on page 25

• “Migration of Embedded IDE Link and Target Support Package Features
to Simulink® Coder and Embedded Coder” on page 25

• “Interface Changes Related to Product Restructuring” on page 26

• “Simulink Graphical User Interface Changes” on page 27

• “Compatibility Considerations” on page 28

Product Restructuring Overview
In R2011a, the Embedded Coder product replaces the Real-Time Workshop®

Embedded Coder product. Additionally,

• The Simulink Coder product combines and replaces the Real-Time
Workshop and Stateflow® Coder™ products

• The Real-Time Workshop facility for converting MATLAB code to C/C++
code, formerly referred to as Embedded MATLAB® Coder, has migrated to
the new MATLAB® Coder™ product.

• The previously existing Embedded IDE Link™ and Target Support
Package™ products have been integrated into the new Simulink Coder and
Embedded Coder products.

23

Embedded Coder™ Release Notes

The following figure shows the R2011a transitions for C/C++ code generation
related products, from the R2010b products to the new MATLAB Coder,
Simulink Coder, and Embedded Coder products.

Simulink
Coder

MATLAB Coder

Embedded
Coder

Embedded
IDE Link

Target
Support
Package Stateflow

Coder

Real-Time
Workshop
Embedded

Coder

Real-Time
Workshop

embedded

Resources for Upgrading from Real-Time Workshop Embedded
Coder
If you are upgrading to Embedded Coder from Real-Time Workshop
Embedded Coder, review information about compatibility and upgrade issues
at the following locations:

• “Compatibility Summary for Embedded Coder Software” on page 54 (latest
release)

• On the MathWorks web site, in the Archived documentation, select R2010b,
and view the following tables, which are provided in the release notes
for Real-Time Workshop Embedded Coder: Compatibility Summary for
Real-Time Workshop Embedded Coder Software:

This table provides compatibility information for releases up through
R2010b.

24

http://www.mathworks.com/help/doc-archives.html

Version 6.0 (R2011a) Embedded Coder™ Software

• If you use the Embedded IDE Link or Target Support Package capabilities
that now are integrated into Simulink Coder and Embedded Coder, go
to the Archived documentation and view the corresponding tables for
Embedded IDE Link or Target Support Package:

- Compatibility Summary for Embedded IDE Link (R2010b)

- Compatibility Summary for Target Support Package (R2010b)

You can also refer to the rest of the archived documentation, including release
notes, for the Real-Time Workshop, Stateflow Coder, Embedded IDE Link,
and Target Support Package products.

Migration of Embedded MATLAB Coder Features to MATLAB
Coder
In R2011a, the MATLAB Coder function codegen replaces the Real-Time
Workshop function emlc. The emlc function still works in R2011a but
generates a warning, and will be removed in a future release. For more
information, see “Generating C/C++ Code from MATLAB Code” in the
MATLAB Coder documentation.

Migration of Embedded IDE Link and Target Support Package
Features to Simulink Coder and Embedded Coder
In R2011a, the capabilities formerly provided by the Embedded IDE Link and
Target Support Package products have been integrated into Simulink Coder
and Embedded Coder. The following table summarizes the transition of the
Embedded IDE Link and Target Support Package supported hardware and
software into Coder products.

25

http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/doc-archives.html

Embedded Coder™ Release Notes

Former Product Supported
Hardware and
Software

Simulink
Coder

Embedded
Coder

Altium TASKING x

Analog Devices
VisualDSP++

x

Eclipse™ IDE x x

Green Hills MULTI x

Embedded IDE Link

Texas Instruments’
Code Composer Studio

x

Analog Devices™

Blackfin®
x

ARM x

Freescale MPC5xx x

Infineon C166 x

Texas Instruments
C2000™

x

Texas Instruments
C5000™

x

Texas Instruments
C6000™

x

Linux OS x x

Windows OS x

Target Support
Package

VxWorks RTOS x

Interface Changes Related to Product Restructuring
You will see interface changes as part of restructuring the Coder products.

• In the Simulink Configuration Parameters dialog box, changes to code
generation related elements

• In Simulink menus, changes to code generation related elements

26

Version 6.0 (R2011a) Embedded Coder™ Software

• In Simulink blocks, including block parameters and dialog boxes, and block
libraries, changes to code generation related elements

• In error messages, tool tips, demos, and product documentation, references
to Real-Time Workshop Embedded Coder, Real-Time Workshop, and
Stateflow Coder and related terms are replaced with references to the
latest software

Simulink Graphical User Interface Changes

Where... Previously... Now...

Configuration
Parameters dialog
box

Real-Time Workshop
pane

Code Generation
pane

Model diagram window Tools > Real-Time
Workshop

Tools > Code
Generation

Subsystem context
menu

Real-Time Workshop Code Generation

Subsystem Parameter
dialog box

Following parameters
on main pane:
• Real-Time
Workshop system
code

• Real-Time
Workshop
function name
options

• Real-Time
Workshop
function name

• Real-Time
Workshop file
name options

• Real-Time
Workshop

On new Code
Generation pane
and renamed:

• Function
packaging

• Function name
options

• Function name

• File name options

• File name (no
extension)

27

Embedded Coder™ Release Notes

Where... Previously... Now...

file name (no
extension)

Compatibility Considerations
In the Help browser Contents pane, Embedded Coder is now listed with the
products for MATLAB, because Embedded Coder now supports both MATLAB
Coder and Simulink Coder workflows.

Data Management Enhancements and Changes

• “Memory Section Enhancements” on page 28

• “No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink
Data Objects” on page 29

• “Parts of Data Class Infrastructure No Longer Available” on page 29

• “No Longer Generating Pragma for Data Defined with Built-In Storage
Class ExportedGlobal, ImportedExtern, or ImportedExternPointer” on
page 30

• “Simulink.CustomParameter and Simulink.CustomSignal Data Classes To
Be Deprecated in a Future Release” on page 31

Memory Section Enhancements

• Pragmas are now added to data and function declarations (prior to R2011a
they were added to definitions only); at compile time, this makes the
compiler aware of memory locations for functions and data, potentially
optimizing generated code

• New function category is available for shared utilities on the Code
Generation > Memory Sections pane: “Shared utility”

• Referenced models can have a memory section that is different from that of
the top model for the InitTerm and Execute function categories

28

Version 6.0 (R2011a) Embedded Coder™ Software

No Longer Able to Set RTWInfo or CustomAttributes Property
of Simulink Data Objects
You can no longer set the RTWInfo or CustomAttributes property of a
Simulink data object from the MATLAB Command Window or a MATLAB
script. Attempts to set these properties generate an error.

Although you cannot set RTWInfo or CustomAttributes, you can still set
subproperties of RTWInfo and CustomAttributes.

Compatibility Considerations. Operations from the MATLAB Command
Window or a MATLAB script, which set the data object property RTWInfo or
CustomAttributes, generate an error.

For example, a MATLAB script might set these properties by copying a data
object as shown below:

a = Simulink.Parameter;
b = Simulink.Parameter;
b.RTWInfo = a.RTWInfo;
b.RTWInfo.CustomAttributes = a.RTWInfo.CustomAttributes;
.
.
.

To copy a data object, use the object’s deepCopy method.

a = Simulink.Parameter;
b = a.deepCopy;
.
.
.

Parts of Data Class Infrastructure No Longer Available
Simulink has been generating warnings for usage of the following data class
infrastructure features for several releases. As of R2011a, the features are
no longer supported.

• Custom storage classes not captured in the custom storage class
registration file (csc_registration) – warning displayed since R14SP2

29

Embedded Coder™ Release Notes

• Built-in custom data class attributes BitFieldName and
FileName+IncludeDelimiter – warning displayed since R2008b

Instead of... Use...

BitFieldName StructName

FileName+IncludeDelimiterHeaderFile

• Initial value of MPT data objects inside mpt.CustomRTWInfoSignal –
warning displayed since R2006a

Compatibility Considerations.

• When you use a removed feature, Simulink now generates an error.

• When loading a MAT-file that uses an unsupported feature, the load
operation suppresses the generated error such that it is not visible. In
addition, MATLAB silently deletes data that had been associated with the
unsupported feature. To prevent loss of data when loading a MAT-file, load
and resave the file with R2010b or earlier.

No Longer Generating Pragma for Data Defined with
Built-In Storage Class ExportedGlobal, ImportedExtern, or
ImportedExternPointer
The code generator no longer generates a pragma around definitions or
declarations for data that has the following built-in storage classes:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

Prior to R2011a, based on model configuration parameters for specifying
memory sections and the built-in storage class defined for data, the code
generator would do the following:

30

Version 6.0 (R2011a) Embedded Coder™ Software

For Built-In Storage Class... Generate pragma Around...

ExportedGlobal Data definition and
declaration

ImportedExtern Data declaration

ImportedExternPointer Data declaration

The code generator now treats data with these built-in storage classes like
custom storage classes with no memory section specified.

Compatibility Considerations. To work around this change, select a
custom storage class that uses the memory section of interest for the data.

Simulink.CustomParameter and Simulink.CustomSignal Data
Classes To Be Deprecated in a Future Release
In a future release, data classes Simulink.CustomParameter and
Simulink.CustomSignal will no longer be supported because they are
equivalent to Simulink.Parameter and Simulink.Signal.

Compatibility Considerations. If you use the data class
Simulink.CustomParameter or Simulink.CustomSignal, Simulink posts a
warning that identifies the class and describes one or more techniques for
eliminating it. You can ignore these warnings in R2011a, but consider making
the described changes now because the classes will be removed in a future
release.

AUTOSAR Enhancements
The following enhancements are available in R2011a.

Calibration Parameters
Previously, the software supported only calibration parameters that were
defined by a calibration component. These parameters could be accessed by
all AUTOSAR Software Components. The AUTOSAR standard also specifies
an internal calibration parameter that is defined and accessed by only one
AUTOSAR Software Component. The software now supports:

31

Embedded Coder™ Release Notes

• AUTOSAR internal calibration parameters, including the import and
export of initial values of these parameters.

• A bus object data type (AUTOSAR record type) to import and export both
kinds of calibration parameters.

For more information, see “Calibration Parameters” and “Configuring
Calibration Parameters” in the Embedded Coder documentation.

Multiple Runnables from Virtual Subsystems
Previously, if a wrapper subsystem had virtual subsystems containing
function-call subsystems, you could not export the function-call subsystems
as AUTOSAR runnables from the wrapper subsystem level. Now, within
a wrapper subsystem, you can group function-call subsystems into virtual
subsystems and generate runnables for these function-call subsystems. See
“Configuring Multiple Runnables” and “Exporting AUTOSAR Software
Component” in the Embedded Coder documentation.

Support for Code Descriptor Elements
The AUTOSAR standard specifies that the XML description of an AUTOSAR
Software Component implementation must contain code descriptor elements
to describe generated source files and include header files. This feature allows
AUTOSAR authoring tools that import software components to automate
the building process for source code.

Previously, the software did not generate the software component
implementation file (modelname_implementation.arxml) with these code
descriptor elements. Now, when you build a Simulink model for an AUTOSAR
target, the software generates a CODE-DESCRIPTORS element within the
SWC_IMPLEMENTATION element. The CODE-DESCRIPTORS element contains
XFILE elements that provide descriptions of the generated code.

For example, if you build the model rtwdemo_autosar_counter, the generated
file rtwdemo_autosar_counter_implementation.arxml has the following
SWC_IMPLEMENTATION element:

....

<SWC-IMPLEMENTATION>

<SHORT-NAME>rtwdemo_autosar_counter</SHORT-NAME>

32

Version 6.0 (R2011a) Embedded Coder™ Software

<CODE-DESCRIPTORS>

<CODE>

<SHORT-NAME>Code</SHORT-NAME>

<TYPE>SRC</TYPE>

<XFILES>

<XFILE>

<SHORT-NAME>rtwdemo_autosar_counter_c</SHORT-NAME>

<CATEGORY>GeneratedFile</CATEGORY>

<URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.c</URL>

<TOOL>Embedded Coder</TOOL>

<TOOL-VERSION>5.6</TOOL-VERSION>

</XFILE>

<XFILE>

<SHORT-NAME>rtwdemo_autosar_counter_h</SHORT-NAME>

<CATEGORY>GeneratedFile</CATEGORY>

<URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.h</URL>

<TOOL>Embedded Coder</TOOL>

<TOOL-VERSION>5.6</TOOL-VERSION>

</XFILE>

...

</XFILES>

</CODE>

</CODE-DESCRIPTORS>

<CODE-GENERATOR>Embedded Coder 5.6 (R2011a) 26-Aug-2010</CODE-GENERATOR>

<PROGRAMMING-LANGUAGE>C</PROGRAMMING-LANGUAGE>

</SWC-IMPLEMENTATION>

....

SIL and PIL Enhancements

Code Execution Profiling
You can collect execution time measurements in a specified base workspace
variable during a software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulation. At the end of the simulation, you can view or analyze the
measurements within the MATLAB environment. This feature allows you to
collect an execution time profile for each task within your generated code.

The software supports code execution profiling for all types of SIL or PIL
simulations except the SIL block.

33

Embedded Coder™ Release Notes

For more information, see “Code Execution Profiling” in the Embedded Coder
documentation.

PIL Block Parameter Tuning
R2011a supports parameter tuning for the PIL block, which allows you
to change tunable workspace parameters between or during simulations
without regenerating code. This feature also includes support for tunable
structure parameters. For more information, see “I/O Support” and “Tunable
Parameters and SIL/PIL”.

Top-Model SIL/PIL and PIL Block Parameter Initialization
R2011a supports automatic definition and initialization of parameters with
imported storage classes. For more information, see “I/O Support” and
“Imported Data Definitions”.

Model Block Parameter Tuning and Model Initialization
Previously, the software did not support the following features for Model
block SIL/PIL:

• Simplified initialization mode

• Tunable structure parameters

R2011a now supports these features. For more information, see
“Configuration Parameters Support”, “I/O Support”, and “Tunable Parameters
and SIL/PIL”.

Code Generation Enhancements

Improved Code for Data Store Memory In-place Assignment
Previously, the generated code for a Data Store Memory block used data
copies to perform data store assignments. The generated code now eliminates
the data copies and performs an in-place assignment. This improvement
generates less code, uses less memory, and provides faster execution.

34

Version 6.0 (R2011a) Embedded Coder™ Software

Improvements to Target Function Library Replacements
Enhancements to Target Function Library Replacements (TFL) include:

• If multiple TFL replacements occur within a function, temporary variables
are now reused instead of creating extra temporary variables. This
enhancement reduces the stack size during TFL replacement.

• During TFL replacement, if unnecessary temporary variables are
introduced when block output is not the returned value of the function but
one of the input arguments, code generation now removes the temporary
variable. This enhancement improves execution speed and requires less
memory.

For more information, see “Introduction to Target Function Libraries”.

Improved Loop Fusion
Code generation now includes the following:

• An improved loop fusion algorithm that reduces data copies. This
enhancement decreases stack size, ROM consumption, and code generation
time.

• Selectively fuses loops when the loop count is larger than the “Loop
unrolling threshold”. In these cases, loop unrolling allows the code
generator to perform more optimizations. In addition, the code generator
groups the statements together to assign values to the elements of a signal
or parameter array, which improves data access and code readability.

Improved Array Indexing
The generated code is optimized for more efficient array indexing. When a
complex instruction is used repeatedly in an array index, the instruction is
replaced with a temporary variable to perform the calculation more efficiently.
This enhancement improves execution speed and reduces code size.

Improvement on Matrix Parameter Pooling
For matrix parameters with the same flattened value, the generated code now
pools the matrix parameters even when they have different shapes. This
enhancement reduces ROM consumption.

35

Embedded Coder™ Release Notes

Readability Improvements Involving Data References
For references to the root inport and outport, as well as DWork, unnecessary
parentheses are removed from the generated code. This enhancement
produces more readable code.

Code Generation Verification (CGV) API Updates

Support for Adding Multiple Callback Functions
In R2011a, the cgv.CGV class includes new methods to add callback functions.
These methods replace the cgv.CGV.addCallback method which added only a
pre-execution callback function. Now, the new methods allow CGV to invoke
callback functions at several stages of the cgv.CGV.run execution. The new
methods are:

• cgv.CGV.addHeaderReportFcn adds a callback function invoked before
executing any input data in the cgv.CGV object.

• cgv.CGV.addPreExecReportFcn adds a callback function invoked before
executing each input data file in the cgv.CGV object.

• cgv.CGV.addPreExecFcn adds a callback function invoked before executing
each input data file in the cgv.CGV object.

• cgv.CGV.addPostExecReportFcn adds a callback function invoked after
executing each input data file in the cgv.CGV object.

• cgv.CGV.addPostExecFcn adds a callback function invoked after executing
each input data file in the cgv.CGV object.

• cgv.CGV.addTrailerReportFcn adds a callback function invoked after
executing all input data in the cgv.CGV object.

New Functionality Added to the cgv.CGV Class
The cgv.CGV class now includes the following methods:

• cgv.CGV.activateConfigSet activates the configuration set of a model.

• cgv.CGV.addBaseline adds a file of baseline data for comparison.

36

Version 6.0 (R2011a) Embedded Coder™ Software

• cgv.CGV.copySetup creates a copy of a cgv.CGV object.

• cgv.CGV.setMode specifies the mode of execution (sim, sil, or pil).

• cgv.CGV.copySetup returns the status of the execution of the cgv.CGV
object.

The cgv.CGV class now includes the following properties:

• Name

• Description

Compatibility Considerations
Previously, the cgv.CGV class included parameters that you set to perform
automatic configuration checks of your model. In R2011a, cgv.CGV class no
longer performs automatic configuration checks. Instead, you can use the
cgv.Config class to perform a manual configuration check of your model.
Before calling cgv.CGV.run, MathWorks recommends that you perform
a manual configuration check of your model. Otherwise, an error might
occur later in the process. For more information, see “Programmatic Code
Generation Verification”.

Changes to the cgv.CGV class parameters are listed in the following table.

Parameter What Happens
When You Use
Parameter?

Use This Parameter
Instead

Compatibility
Considerations

LogMode removed from
cgv.CGV

Errors LogMode parameter in
cgv.Config

To check your model
before running
CGV, pass the
LogMode parameter
to the constructor
for cgv.Config.
Then call the
cgv.Config.configModel

37

Embedded Coder™ Release Notes

Parameter What Happens
When You Use
Parameter?

Use This Parameter
Instead

Compatibility
Considerations

method to adjust the
model configuration.

Processor removed
from cgv.CGV

Errors Processor parameter
in cgv.Config

To check your model
before running
CGV, pass the
Processor parameter
to the constructor
for cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

SaveModel removed
from cgv.CGV

Errors SaveModel parameter
in cgv.Config

To check your model
before running
CGV, pass the
SaveModel parameter
to the constructor
for cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

ConfigModel removed
from cgv.CGV

Warns if set to off

Errors if set to on

cgv.Config.configModel
method

To check your model
before running
CGV, replace the
cgv.CGVConfigModel
parameter with
a call to the
cgv.Config.configModel
method

38

Version 6.0 (R2011a) Embedded Coder™ Software

Parameter What Happens
When You Use
Parameter?

Use This Parameter
Instead

Compatibility
Considerations

CheckInterface
parameter from
cgv.CGV

Warns if set to off

Errors if set to on

CheckOutports
parameter in
cgv.Config

To check your model
before running
CGV, pass the
CheckOutports
parameter to
the constructor
for cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

tasking and custom
values removed from
the Connectivity
parameter of cgv.CGV

Errors pil, a new value
for the cgv.CGV
Connectivity
parameter

Replace calls
to the cgv.CGV
constructor using
the parameter-value
arguments,
('Connectivity',
'tasking') or
('Connectivity',
'custom'), with
('Connectivity,
'pil').

Changes to the cgv.Config class parameters are listed in the following table:

39

Embedded Coder™ Release Notes

Parameter What Happens
When You Use
Parameter?

Use This Parameter
Instead

Compatibility
Considerations

CheckOutports
parameter added
to cgv.Config

Defaults to on.
Compiles the model.
Then checks that
the model outport
configuration is
compatible with the
cgv.CGV object.

If your script fixes
errors reported by
cgv.Config, you can
set CheckOutports to
off.

LogMode parameter
from cgv.Config

Change in behavior If you do not give a
value for LogMode, no
changes are made to
the configuration
parameters for
logging.

MISRA-C Code Generation Objective
The Code Generation Advisor now includes a new objective for MISRA-C:2004
guidelines. To set the new objective, open the Configuration Parameters
dialog box and select the Code Generation pane. In the Code Generation
Advisor section, click the Set objectives button to open the Code Generation
Advisor dialog box. In the Available objectives list, select MISRA-C:2004
guidelines and click the select button (arrow pointing right) to move the
objective to the Selected objectives list. For more information on setting
objectives, see “Application Objectives”.

New Model Advisor Check for Code Efficiency of
Lookup Table Blocks
The Simulink Model Advisor includes the following new check for code
efficiency of lookup table blocks: “Identify lookup table blocks that generate
expensive out-of-range checking code”. By default, the following blocks
generate code that checks for out-of-range breakpoint inputs:

• 1-D Lookup Table

• 2-D Lookup Table

40

Version 6.0 (R2011a) Embedded Coder™ Software

• n-D Lookup Table

• Prelookup

Similarly, the Interpolation Using Prelookup block generates code that checks
for out-of-range index inputs. Running this Model Advisor check helps you
identify lookup table blocks that generate out-of-range checking code for
breakpoint or index inputs.

For more information about the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

Enhanced Code Generation Optimization
The Optimize using specified minimum and maximum values code
generation option now takes into account the minimum and maximum values
specified for:

• A Simulink.Parameter object provided that it is used on its own. It does
not use these minimum and maximum values if the object is part of an
expression. For example, if a Gain block has a gain parameter specified
as K1, where K1 is defined as a Simulink.Parameter object in the base
workspace, the optimization takes the minimum and maximum values
of K1 into account. However, if the Gain block has a gain parameter of
K1+5 or K1+K2+K3, where K2 and K3 are also Simulink.Parameter objects,
the optimization does not use the minimum and maximum values of K1,
K2 or K3.

• All design ranges specified on block outputs in a conditionally-executed
subsystem, except for the block outputs that are directly connected to an
Outport block.

For more information, see “Optimizing Generated Code Using Specified
Minimum and Maximum Values”.

41

Embedded Coder™ Release Notes

Target Function Library Replacement Based on
Computation Method for Reciprocal Sqrt, Sine, and
Cosine
Target function libraries (TFLs) now support the ability to control replacement
of certain math functions using their computation method as a distinguishing
attribute. For example,

• The rSqrt block can be configured to use either of two computation
methods, Newton-Raphson or Exact.

• The Trigonometric Function block, with Function set to sin or cos, can be
configured to use either of two approximation methods, CORDIC or None.

You can configure TFL table entries to replace these functions for one or all
of the available computation methods. For example, you could replace only
Newton-Raphson instances of the rSqrt function.

For more information, see “Replacing Math Functions Based on Computation
Method” in the Embedded Coder documentation.

Target Function Library Support for abs, min, max,
and sign functions
Embedded Coder software now supports target function library customization
control for fixed-point abs, min, max, and sign functions.

For more information, see “Registering Target Function Libraries”.

C++ Encapsulation Allowed for Referenced Models
in For Each Subsystems
In previous releases, due to a code generation limitation, code could not be
generated for a For Each Subsystem block under the following conditions:

• The For Each Subsystem block directly or indirectly contains a Model block.

• The Model block references a model for which C++ encapsulation is selected.

R2011a removes this limitation. You can now generate code for a For Each
Subsystem in which a referenced model uses C++ encapsulation.

42

Version 6.0 (R2011a) Embedded Coder™ Software

Improved Code Generation for Portable Word Sizes
In the software-in-the-loop (SIL) simulation work flow, the model option
Enable portable word sizes allows you to take code intended for a specific
target platform and compile and run the same code on a MATLAB host
platform that uses different processor word sizes. R2011a enhances the code
generated for portable word sizes by inserting explicit casts to help protect
against integral promotion differences and other behavior differences between
host and target. This potentially can reduce the incidence of numerical
differences due to host/target behavior differences. For more information, see
“Configuring Hardware Implementation Settings for SIL” and “Portable Word
Sizes Limitations” in the Embedded Coder documentation.

Improved Comments in the Generated Code
R2011a provides improvements to comment generation for better readability
and understanding of the generated code. Specifically, comments are located
closer to the referring code and more accurately reflect the intent of the code.
An end comment is now included at the end of a control flow block of code. For
information on customizing comments in the generated code, see “Configuring
Code Comments in Embedded System Code”.

Replacement Data Types and Simulation Mode for
Referenced Models
To replace built-in data type names with user-defined data type names in the
generated code for a referenced model, you must set the Simulation mode
parameter for the Model block to one of the following:

• Normal

• Software-in-the-loop (SIL)

• Processor-in-the-loop (PIL)

For more information, see “Data Types” and “Referenced Model Simulation
Modes” in the Simulink documentation.

Changes for Embedded IDEs and Embedded Targets

• “Feature Support for Embedded IDEs and Embedded Targets” on page 44

43

Embedded Coder™ Release Notes

• “Execution Profiling during PIL Simulation” on page 45

• “Location of Blocks for Embedded Targets” on page 45

• “Location of Demos for Embedded IDEs and Embedded Targets” on page 47

• “Multicore Deployment with Rate-Based Multithreading” on page 48

• “Windows-Based Code Generation and Remote Build On Linux Target
(BeagleBoard)” on page 48

• “Changes to Frame-Based Processing” on page 48

• “New Support for Analog Devices Blackfin BF50x and BF51x Processors”
on page 50

• “Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8,
and Cortex-A9 Processors” on page 50

• “Support for Versions 5.0.6 and 5.1.6 of Green Hills® MULTI” on page 50

• “Support for Texas Instruments Delfino C2834x Processors” on page 51

• “Ending Support for Altium TASKING in a Future Release” on page 52

• “Ending Support for Freescale MPC5xx in a Future Release” on page 52

• “Ending Support for Infineon® C166 in a Future Release” on page 52

• “Removed Methods and Arguments” on page 52

Feature Support for Embedded IDEs and Embedded Targets
The Embedded Coder software provides the following features as implemented
in the former Target Support Package and former Embedded IDE Link
products:

• Automation Interface

• Processor-in-the-Loop (PIL) Simulation

• Execution Profiling

• Execution Profiling during PIL Simulation

• Stack Profiler

• External Mode

• Schedulers and Timing

44

Version 6.0 (R2011a) Embedded Coder™ Software

• Makefile Generation (XMakefile)

• Target Function Library (TFL) Optimization

• Multicore Deployment for Rate Based Multithreading

Note You can only use these features in the 32-bit version of your
MathWorks products. To use these features on 64-bit hardware, install and
run the 32-bit versions of your MathWorks products.

Execution Profiling during PIL Simulation
During Processor-in-the-loop (PIL) simulation, you can profile synchronous
tasks in code running on the target. For more information, see Execution
Profiling during PIL Simulation

Location of Blocks for Embedded Targets
Blocks from the former Target Support Package product and Embedded IDE
Link product now reside under Embedded Coder in the Embedded Targets
block library, as shown.

45

Embedded Coder™ Release Notes

Embedded Targets includes the following types of blocks:

• Host Communication

• Operating Systems

- Embedded Linux

- VxWorks

• Processors

- Analog Devices Blackfin

- Analog Devices™ SHARC®

- Analog Devices™ TigerSHARC®

- Freescale MPC55xx MPC74xx

- Freescale MPC5xx

- Infineon C166

46

Version 6.0 (R2011a) Embedded Coder™ Software

- Texas Instruments C2000

- Texas Instruments C5000

- Texas Instruments C6000

Location of Demos for Embedded IDEs and Embedded Targets
Demos from the former Target Support Package product and Embedded
IDE Link product now reside under Simulink Coder product help. Click the
expandable links, as shown.

47

Embedded Coder™ Release Notes

Multicore Deployment with Rate-Based Multithreading
You can deploy rate-based multithreading applications to multicore processors
running Embedded Linux and

VxWorks. This feature improves performance by taking advantage of
multicore hardware resources.

Also see the “Running Target Applications on Multicore Processors” user’s
guide topic.

Windows-Based Code Generation and Remote Build On Linux
Target (BeagleBoard)
You can generate a makefile project on a Windows host machine, transfer the
makefile project to an remote target running Linux, such as a BeagleBoard,
and then build the executable on the remote target.

Changes to Frame-Based Processing
Signal processing applications often process sequential samples of data at
once as a group, rather than one sample at a time. MathWorks documentation
refers to the former as frame-based processing and the latter as sample-based
processing. A frame is a collection of samples of data, sequential in time. To
perform frame-based processing in MathWorks products, you must have a
DSP System Toolbox™ license.

Historically, Simulink-family products that can perform frame-based
processing propagate frame-based signals throughout a model. The frame
status is an attribute of the signals in a model, just as data type and
dimensions are attributes of a signal. The Simulink engine propagates the
frame attribute of a signal with a frame bit, which can either be on or off.
When the frame bit is on, Simulink interprets the signal as frame-based, and
displays it as a double line, rather than as a single line.

Beginning in R2010b, MathWorks started to change the handling of
frame-based processing significantly. In the future, signal attributes will not
include frame status. Instead, individual blocks will control whether they
treat data inputs as frames or as samples.

48

Version 6.0 (R2011a) Embedded Coder™ Software

To transition to this new paradigm, blocks that can perform sample- and
frame-based processing contain a new Input processing parameter that
specifies the appropriate processing behavior. You can set Input processing
to Columns as channels (frame based) or Elements as channels
(sample based). The third option, Inherited (this choice will be
removed - see release notes), is a temporary selection. This third option
helps you migrate your existing models from the old paradigm to the new
paradigm.

In R2011a, the following Embedded Coder blocks received a new Input
processing parameter:

• C62X Real Forward Lattice All-Pole IIR

• C62X Complex FIR

• C62X General Real FIR

• C62X Real IIR

• C64X Real Forward Lattice All-Pole IIR

Compatibility Considerations. When you load an existing model in
R2011a, blocks with the new Input processing parameter shows a setting of
Inherited (this choice will be removed - see release notes). This
setting enables your existing models to work as expected until you upgrade
them. Upgrade your models as soon as possible.

To upgrade your existing models, use the slupdate function. This function
detects all blocks that have Input processing set to Inherited (this
choice will be remove - see release notes). The function asks you
whether to upgrade each block. If you select yes, the function detects the
status of the frame bit on the input port of the block. If the frame bit is 1
(frames), the function sets the Input processing parameter to Columns as
channels (frame based). If the bit is 0 (samples), the function sets the
parameter to Elements as channels (sample based).

A future release will remove the frame bit and the Inherited (this choice
will be removed - see release notes) option. At that time, if you
have not updated the model, the software automatically sets the Input
processing parameter. The software uses the library default setting of the
block to select either Columns as channels (frame based) or Elements as

49

Embedded Coder™ Release Notes

channels (sample based). If the library default setting does not match the
parameter setting in your model, your model will produce unexpected results.
Additionally, after the removal of the frame bit, you will no longer be able to
upgrade your models using the slupdate function. Therefore, upgrade your
existing modes using slupdate as soon as possible.

New Support for Analog Devices Blackfin BF50x and BF51x
Processors
You can now generate code for the following embedded processors when you
use Embedded Coder software:

• BF504

• BF504F

• BF506F

• BF512

• BF514

• BF516

• BF518

Generate Optimized Fixed-Point Code for ARM Cortex-M3,
Cortex-A8, and Cortex-A9 Processors
You can use new Target Function Libraries (TFLs) to generate efficient
fixed-point code for the ARM Cortex-M3, Cortex-A8, and Cortex-A9 processors.
These TFLs include GCC compiler extensions and intrinsic functions that
optimize the code Embedded Coder generates for these processors.

Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI
Support for Green Hills MULTI software now includes versions 5.0.6 and
5.1.6. For additional information about supported versions, see the Support
for Green Hills MULTI topic online.

50

http://sharepoint/SearchCenter/results.aspx?k=marshall&s=Everything
http://sharepoint/SearchCenter/results.aspx?k=marshall&s=Everything

Version 6.0 (R2011a) Embedded Coder™ Software

Support for Texas Instruments Delfino C2834x Processors
You can now generate code for the following embedded processors when
you use Embedded Coder software with Texas Instruments Code Composer
Studio™ software:

• C28341

• C28342

• C28343

• C28344

• C28345

• C28346

The new “C2834x (c2834xlib)” block library contains the following blocks:

• C2000 CAN Calibration Protocol

• C280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Input

• C280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Output

• C280x/C2802x/C2803x/C28x3x/C2834x I2C Receive

• C280x/C2802x/C2803x/C28x3x/C2834x I2C Transmit

• C280x/C2802x/C2803x/C28x3x/c2834x SCI Receive

• C280x/C2802x/C2803x/C28x3x/c2834x SCI Transmit

• C280x/C2802x/C2803x/C28x3x/c2834x SPI Receive

• C280x/C2802x/C2803x/C28x3x/c2834x SPI Transmit

• C280x/C2802x/C2803x/C28x3x/c2834x Software Interrupt Trigger

• C28x Watchdog

• C280x/C2803x/C28x3x/c2834x eCAN Receive

• C280x/C2803x/C28x3x/c2834x eCAN Transmit

• C280x/C2802x/C2803x/C28x3x/c2834x eCAP

• C280x/C2802x/C2803x/C28x3x/c2834x ePWM

• C280x/C2803x/C28x3x/c2834x eQEP

51

Embedded Coder™ Release Notes

Ending Support for Altium TASKING in a Future Release
Support for the Altium TASKING IDE will end in a future release of the
Embedded Coder product.

Ending Support for Freescale MPC5xx in a Future Release
Support for the Freescale MPC5xx processor family will end in a future
release of the Embedded Coder product.

Ending Support for Infineon C166 in a Future Release
Support for the Infineon C166 processor family will end in a future release of
the Embedded Coder product.

Removed Methods and Arguments
Deprecated the type property for the Code Composer Studio IDE object. For
example, entering the following text generates an error message:

infolist = IDE_Obj.list(type)

Changes to ver Function Product Arguments
The following changes have been made to ver function arguments related to
embedded code generation products:

• The new argument 'embeddedcoder' returns information about the
installed version of the Embedded Coder product.

• The argument 'ecoder', which previously returned information about the
installed version of the Real-Time Workshop® Embedded Coder™ product,
no longer works. The software displays a “not found” warning.

For more information about using the function, see the ver documentation.

Compatibility Considerations
If a script calls the ver function with the 'ecoder' argument, update the
script appropriately. For example, you can update the ver call to use the
'embeddedcoder' argument.

52

Version 6.0 (R2011a) Embedded Coder™ Software

New and Enhanced Demos
The following demos have been added in R2011a:

Demo... Shows How You Can...

coderdemo_tfl Use target function libraries (TFLs) to replace
operators and functions in code generated by
MATLAB Coder.

rtwdemo_code_coverage_script Generate model coverage and code coverage reports,
and use these reports to compare model coverage
and code coverage results for any part of a model.

rtwdemo_pmsmfoc_script Perform system-level simulation and algorithmic
code generation using Field-Oriented Control for a
Permanent Magnet Synchronous Machine.

The following demos have been enhanced in R2011a:

Demo... Now...

vipstabilize_fixpt_beagleboard Uses the new Video Capture block to simulate
or capture a video input signal in the Video
Stabilization demo.

53

Embedded Coder™ Release Notes

Compatibility Summary for Embedded Coder Software
This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with Version
Compatibility Impact

Latest Version
V6.1 (R2011b)

See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Custom Storage Class Properties for
Managing Data Ownership and Definition”
on page 12

• “Update to Code Generation Verification
Class cgv.Config” on page 20

V6.0 (R2011a) See the Compatibility Considerations
subheading for each of these new features or
changes:

• Code Generation Verification classes,
cgv.CGV and cgv.Config

• “Changes to ver Function Product
Arguments” on page 52

• “Changes to Frame-Based Processing” on
page 48

• “Coder Product Restructuring” on page 23

54

	toc
	Bug Reports
	Summary by Version
	Using Release Notes
	What Is in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	Documentation on the MathWorks Web Site

	Version 6.1 (R2011b) Embedded Coder Software
	Static Code Metrics in Code Generation Report
	AUTOSAR Enhancements
	Import and Export of AUTOSAR Sensor/Actuator Components
	Improved Simulink Library Support for Multiple Runnables
	AUTOSAR Schema Version 3.2
	Export AUTOSAR XML as Single File

	SIL and PIL Enhancements
	Code Execution Profiling of Functions in Subsystems and Model Bl
	Code Coverage with LDRA Testbed
	BitField and GetSet Custom Storage Classes
	Model Blocks with Variable-Size Signals
	Verification of Generated C++ Code

	Generate Multitasking Code for Concurrent Execution on Multicore
	Changes for Embedded IDEs and Embedded Targets
	64-bit Version of Embedded Coder Supports Analog Devices VisualD
	Support Added for Wind River VxWorks 6.8
	Support Added for Serial Communications Interface with Processor
	New Target Function Library for Intel IPP/SSE (GNU)
	Support Added for Single Instruction Multiple Data (SIMD) with A
	Support Removed for Altium TASKING
	Support Removed for Infineon C166
	Support Ending for Green Hills MULTI in a Future Release
	Support Ending for Freescale MPC5xx in a Future Release

	Saturation Control of Stateflow Data
	Custom Storage Class Properties for Managing Data Ownership and
	Compatibility Considerations:

	Export Data Declarations to Shared Header File for Code Generati
	Target Function Library Code Replacement Enhancements
	Code Replacement Tool for Creating and Managing TFL Tables
	Ability to Align Data Objects to TFL-Specified Boundaries to Boo
	Support for Replacing Element-wise Matrix Multiply

	Code Generation Enhancements
	Redundant Condition Checks
	Loop Fusion
	Invariant Condition Check Lifting
	Parameter Pooling for Stateflow and Interpreted MATLAB Function
	Readability Improvement for Reusable Subsystem Input and Output

	Enhanced Code Generation Optimization Using Minimum and Maximum
	New Model Advisor Check for Code Efficiency of Logic Blocks
	Control of Default Case Generation for Switch Statements in Gene
	Improvement to Build Process for Conflicting Identifiers
	Update to Code Generation Verification Class cgv.Config
	Compatibility Considerations

	License Names Not Yet Updated for Coder Product Restructuring
	New and Enhanced Demos

	Version 6.0 (R2011a) Embedded Coder Software
	Coder Product Restructuring
	Product Restructuring Overview
	Resources for Upgrading from Real-Time Workshop Embedded Coder
	Migration of Embedded MATLAB Coder Features to MATLAB Coder
	Migration of Embedded IDE Link and Target Support Package Featur
	Interface Changes Related to Product Restructuring
	Simulink Graphical User Interface Changes
	Compatibility Considerations

	Data Management Enhancements and Changes
	Memory Section Enhancements
	No Longer Able to Set RTWInfo or CustomAttributes Property of Si
	Parts of Data Class Infrastructure No Longer Available
	No Longer Generating Pragma for Data Defined with Built-In Stora
	Simulink.CustomParameter and Simulink.CustomSignal Data Classes

	AUTOSAR Enhancements
	Calibration Parameters
	Multiple Runnables from Virtual Subsystems
	Support for Code Descriptor Elements

	SIL and PIL Enhancements
	Code Execution Profiling
	PIL Block Parameter Tuning
	Top-Model SIL/PIL and PIL Block Parameter Initialization
	Model Block Parameter Tuning and Model Initialization

	Code Generation Enhancements
	Improved Code for Data Store Memory In-place Assignment
	Improvements to Target Function Library Replacements
	Improved Loop Fusion
	Improved Array Indexing
	Improvement on Matrix Parameter Pooling
	Readability Improvements Involving Data References

	Code Generation Verification (CGV) API Updates
	Support for Adding Multiple Callback Functions
	New Functionality Added to the cgv.CGV Class
	Compatibility Considerations

	MISRA-C Code Generation Objective
	New Model Advisor Check for Code Efficiency of Lookup Table Bloc
	Enhanced Code Generation Optimization
	Target Function Library Replacement Based on Computation Method
	Target Function Library Support for abs, min, max, and sign func
	C++ Encapsulation Allowed for Referenced Models in For Each Subs
	Improved Code Generation for Portable Word Sizes
	Improved Comments in the Generated Code
	Replacement Data Types and Simulation Mode for Referenced Models
	Changes for Embedded IDEs and Embedded Targets
	Feature Support for Embedded IDEs and Embedded Targets
	Execution Profiling during PIL Simulation
	Location of Blocks for Embedded Targets
	Location of Demos for Embedded IDEs and Embedded Targets
	Multicore Deployment with Rate-Based Multithreading
	Windows-Based Code Generation and Remote Build On Linux Target (
	Changes to Frame-Based Processing
	New Support for Analog Devices Blackfin BF50x and BF51x Processo
	Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8
	Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI
	Support for Texas Instruments Delfino C2834x Processors
	Ending Support for Altium TASKING in a Future Release
	Ending Support for Freescale MPC5xx in a Future Release
	Ending Support for Infineon C166 in a Future Release
	Removed Methods and Arguments

	Changes to ver Function Product Arguments
	Compatibility Considerations

	New and Enhanced Demos

	Compatibility Summary for Embedded Coder Software

